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Abstract. Semiclassical expansions derived in the framework of the Extended Thomas-Fermi approach for
the kinetic energy density τ(�r ) and the spin-orbit density �J(�r ) as functions of the local density ρ(�r ) are
used to determine the central nuclear potentials Vn(�r ) and Vp(�r ) of the neutron and proton distribution for
effective interactions of the Skyrme type. We demonstrate that the convergence of the resulting semiclassical
expansions for these potentials is fast and that they reproduce quite accurately the corresponding Hartree-
Fock average fields.

PACS. 31.15.Ne Self-consistent-field methods – 31.15.Gy Semiclassical methods – 21.60.-n Nuclear-
structure models and methods

1 Introduction

Mean-field calculations have been extremely successful
over the last 3 decades to describe the structure of sta-
ble as well as radioactive nuclei and this over a very
wide range of nuclear masses. Especially effective nucleon-
nucleon interactions of the type of Skyrme [1,2] and Gogny
forces [3] have been particularly efficient in this context.
Such phenomenological effective interactions can be un-
derstood as mathematically simple parametrisations of a
density-dependent effective G-matrix (see [4] and [5] for a
review on such effective forces).

Together with the exact treatment of the mean-field
problem in the Hartree-Fock (HF) approach, semiclassi-
cal approximations thereof have proven very appropriate.
Especially the approach known as the Extended Thomas-
Fermi (ETF) method has been shown [6] to describe
very accurately average nuclear properties in the sense
of the Bethe-Weizsäcker mass formula [7,8]. In their self-
consistent version the ETF calculations determine the
structure of a given nucleus by minimizing the total energy
with respect to a variation of the neutron and proton den-
sities. Such calculations require, however, only integrated
quantities as, e.g., the total nuclear energy.

The aim of the present paper is, on the contrary, to
investigate local quantities such as nuclear mean-field po-
tentials, effective mass and spin-orbit form factors which
are at the basis of the description of the nuclear struc-
ture and which can be obtained as a function of the
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self-consistent semiclassical densities. The convergence of
these local (non-integrated) semiclassical quantities and
their comparison to the corresponding HF distributions
has, to our knowledge, never been extensively investigated
as this will be done here.

This paper is organized as follows. After specifying in
sect. 2 the ETF expressions up to order �

4 for τ [ρ] and
�J [ρ] derived from the general but rather cumbersome form
of these expressions given in [9,10], we show in sect. 3 that
the semiclassical expansions which define these quantities
converge rapidly for reasonable forms of the nuclear den-
sity ρ(�r ). Once these expressions and their convergence
established, we compare in sect. 4 the average mean fields
obtained using these semiclassical densities to the central
potentials resulting from a HF calculation. We finally con-
clude giving an outlook on how these calculations can be
generalized to excited and rotating nuclei.

2 Form factors for Skyrme interactions

For effective nucleon-nucleon interactions of the Skyrme
type the total energy of a nucleus is a functional of the
local densities ρq(�r ), the kinetic energy densities τq(�r )
and the so-called spin-orbit densities �Jq(�r ) [2]

E =
∫

E(ρq(�r ), τq(�r ), �Jq(�r )) d3r , (1)

where the subscript q={n, p} denotes the nucleon charge
state. In the case of broken time-reversal symmetry the
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energy density depends, in addition, on other local quan-
tities [11,12], such as the current density �j(�r ) and the
spin-vector density �ρ(�r ). In what follows we will restrict
ourselves to time-reversal symmetric systems leaving the
case of broken time-reversal symmetry, particularly en-
countered in the case of rotating nuclei, to a subsequent
publication.

The total energy determined in this way is exact within
the HF formalism. A semiclassical approximation thereof
is obtained when instead of using the exact quantum-
mechanical densities ρq(�r ), τq(�r ), �Jq(�r ), etc. a semiclassi-
cal approximation for these quantities is used. The semi-
classical densities τq(�r ) and �Jq(�r ) are obtained in the
so-called Extended Thomas-Fermi model [6] as functions
of the local density ρ(�r ) and of its derivatives. The best
known of these functionals is the Thomas-Fermi approxi-
mation for the kinetic energy density in the form

τ (TF)
q [ρq] =

3
5

(3π2)2/3 ρ5/3
q , q = {n, p} . (2)

Once these functional expression are given, the total en-
ergy of the nuclear system is then uniquely determined
by the knowledge of the local densities of protons and
neutrons. That such a functional dependence of the total
energy on the local densities ρq(�r ) should exist is guaran-
teed by the famous theorem by Hohenberg and Kohn [13].
In the most general quantum-mechanical case this func-
tional is, however, perfectly unknown. The great advan-
tage of the semiclassical approach used here, consists in
the fact that, in connection with effective interactions of
the Skyrme type such an energy functional E can be de-
rived explicitly. In addition, it is to be noted that the
semiclassical functionals obtained in the ETF formalism
such as τ [ρ] are completely general and valid for any local
interaction and any nucleus, and can therefore be deter-
mined once and forever.

Once the functional of the total energy is known, one
is able, due to the Hohenberg-Kohn theorem, to perform
density variational calculations, where the local densities
ρq(�r ) are the variational quantities. One should, however,
keep in mind that, as the ETF functionals are of semi-
classical nature, the density functions ρq(�r ) obtained as a
result of the variational procedure can only be semiclas-
sical in nature, i.e. of the liquid-drop type. Taking into
account that in such a process the particle numbers N
and Z should be conserved, one can formulate the varia-
tional principle in the form

δ

δρq

∫
{E [ρn(�r ), ρp(�r )] − λnρn(�r ) − λpρp(�r )}d3r , (3)

with the Lagrange multipliers λn and λp to ensure the
conservation of neutron and proton number.

This density variational problem has been solved in
two different ways in the past: either by resolving the
Euler-Lagrange equation [14,15] resulting from eq. (3) or
by carrying out the variational calculation in a restricted
subspace of functions adapted to the problem, i.e. being of
semiclassical nature, free of shell oscillations in the nuclear

Fig. 1. Comparison of self-consistent neutron and proton HF
(solid line) and ETF densities (dashed line) for 208Pb calcu-
lated with the SkM∗ Skyrme force.

interior and falling off exponentially in the nuclear surface.
It has been shown [6,14] that modified Fermi functions,
which for spherical symmetry take the form

ρq(�r )=ρ0q

[
1+exp

(
r−R0q

aq

)]−γq

, q = {n, p} , (4)

are particularly well suited in this context and that the
semiclassical energies obtained are, indeed, very close to
those resulting from the exact variation [14,15].

As an example of the quality of the semiclassical den-
sity obtained by such a restricted variation in the subspace
of modified Fermi functions, eq. (4), we show in fig. 1 a
comparison of the neutron and proton densities obtained
in this way within the ETF approach with the correspond-
ing Hartree-Fock (HF) densities for the nucleus 208Pb cal-
culated with the Skyrme interaction SkM∗ [16]. It should
be emphasized here that a similarly good agreement as
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Table 1. Correspondence between the coefficients Bi used in
the text and the usual Skyrme force parameters.

B1
1
2
t0

(
1 + x0

2

)

B2 − t0
2

(
1
2

+ x0

)

B3
1
4

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]

B4 − 1
4

[
t1

(
x1+ 1

2

) − t2
(
x2+ 1

2

)]

B5 − 1
16

[
3t1

(
1 + x1

2

) − t2
(
1 + x2

2

)]

B6
1
16

[
3t1

(
x1+ 1

2

)
+ t2

(
x2+ 1

2

)]

B7
1
12

t3
(
1+ x3

2

)

B8 − 1
12

t3
(

1
2

+ x3

)

B9 − 1
2
W0

the one shown in fig. 1 is obtained for other nuclei or us-
ing other effective interactions such as the Skyrme forces
SIII [17] and SLy4 [18].

The energy density E appearing in eqs. (1) and (3) can
be written for a Skyrme interaction as defined in ref. [19]
in the compact form [20]

E(�r ) =
�

2

2m
τ + B1ρ

2 + B2(ρ2
n + ρ2

p)

+B3ρ τ + B4(ρn τn + ρp τp)

−B5(�∇ρ)2 − B6

[
(�∇ρn)2 + (�∇ρp)2

]
+ρα[B7ρ

2 + B8(ρ2
n + ρ2

p)]

−B9

[
�J · �∇ρ + �Jn · �∇ρn + �Jp · �∇ρp

]
+ ECoul(�r ) ,

(5)

given in terms of the coefficients B1–B9 (see ta-
ble 1) instead of the usual Skyrme force parameters
t0, t1, t2, t3, x0, x1, x2, x3,W0.

In eq. (5) non-indexed quantities like ρ correspond to
the sum of neutron and proton densities as ρ = ρn + ρp

and ECoul is the Coulomb energy density which can be
written as the sum of the direct and an exchange contri-
bution, the latter being taken into account in the Slater
approximation [21,22]

ECoul(�r ) =
e2

2
ρp(�r )

∫
d3r′

ρp(�r ′)

|�r − �r ′ |−
3
4
e2

(
3
π

)1/3

ρ4/3
p (�r ) .

(6)
The HF equation is obtained through the variational

principle which states that the total energy of eq. (1)
should be stationary with respect to any variation of the

single-particle wave functions ϕ
(q)
j :

Ĥqϕ
(q)
j =

(
−�∇ �

2

2m∗
q(�r )

�∇+Vq(�r ) − i �Wq(�r ) · (�∇×�σ)
)

ϕ
(q)
j

= ε
(q)
j ϕ

(q)
j . (7)

Here appear different form factors such as the central one-
body potential Vq(�r ), the effective mass m∗

q(�r ) and the
spin-orbit potential �Wq(�r ) which are all defined as func-
tional derivatives of the total energy density. One obtains
from eq. (5):

Vq(�r ) =
δE(�r )
δρq(�r )

= 2(B1ρ + B2ρq) + B3τ + B4τq

+2(B5∆ρ + B6∆ρq) + (2 + α)B7ρ
α+1

+B8

[
αρα−1

∑
q

ρ2
q + 2ραρq

]

+B9(div �J + div �Jq) + VCoul(�r ) δpq , (8)

fq(�r ) =
m

m∗
q(�r )

=
2m

�2

δE(�r )
δτq(�r )

= 1 +
2m

�2
[B3ρ(�r ) + B4ρq(�r )] (9)

and
�Wq(�r ) =

δE(�r )

δ �Jq(�r )
= −B9

�∇(ρ + ρq) . (10)

The Coulomb potential in eq. (8) is easily obtained as

VCoul(�r ) = e

∫
ρp(�r ′)

|�r − �r ′ | d3r ′ −
( e

π

)1/3

ρ1/3
p (�r ) . (11)

It is noteworthy in this connection that for such an ef-
fective mass (9) and spin-orbit potential (10) the energy
density (5) takes the simple form

E(�r ) =
�

2

2m

∑
q

fq τq + B1ρ
2 + B2(ρ2

n + ρ2
p)

−B5(�∇ρ)2 − B6

[
(�∇ρn)2 + (�∇ρp)2

]
+ρα[B7ρ

2 + B8(ρ2
n + ρ2

p)]

+
∑

q

�Jq · �Wq + ECoul(�r ) , (12)

which simplifies somewhat the calculation.
All the expressions derived so far (eqs. (6)–(12)) are

exact and when used with densities constructed from the
single-particle wave functions ϕ

(q)
j (�r ), solutions of the HF

equation (7), these quantities contain all the quantum ef-
fects of the system. If one is interested in the semiclassical
approximation of these form factors one can immediately
conclude, from the analytical form of eqs. (9) and (10)
and the smooth behavior of the semiclassical densities, as
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demonstrated in fig. 1, on the smooth behavior of the semi-
classical effective mass and spin-orbit form factors. As the
nuclear quantal density is well reproduced on the average
by the ETF densities it appears evident that the same is
going to be the case for the effective mass and the spin-
orbit potential, when semiclassical, i.e. liquid-drop–type
densities are used in eqs. (9) and (10).

Things are, however, less evident for the central nu-
clear potentials. Not only is the functional expression,
eq. (8), much more complicated then those for the effective
mass and spin-orbit potential, but the central potential is
also the only one of the three functional derivatives that
depends not only on the local densities ρq(�r ) and their
derivatives but also on the kinetic energy density τq(�r )
and the spin-orbit density �Jq(�r ) which are the quanti-
ties for which the Extended Thomas-Fermi approach has
written down functional expressions. We, therefore, choose
to study the convergence of the semiclassical series cor-
responding to these functional expressions of τq[ρq] and
�Jq[ρq] before investigating the quality of the agreement
between the HF central potential and the one obtained
when using these semiclassical ETF functionals.

3 Convergence of ETF functionals

The semiclassical expansions of kinetic energy density τq

and spin-orbit density �Jq as functions of the local density
ρq are functional expressions with � as order parameter.
These expressions can be obtained for instance through
the semiclassical � expansions developed by Wigner [23]
and Kirkwood [24] or through the semiclassical method of
Baraff and Borowitz [25]. In either of the two approaches
one obtains functional expressions like

τ (ETF)
q [ρq] = τ (TF)

q [ρq] + τ (2)
q [ρq] + τ (4)

q [ρq] , (13)

written here for the kinetic energy density τq(�r ) where
τ

(TF)
q [ρq] is the well-known Thomas-Fermi expression al-

ready given in eq. (2), τ
(2)
q [ρq] the semiclassical correction

of second order and τ
(4)
q [ρq] is of fourth order in �. The

ETF expressions such as τ
(ETF)
q [ρq], eq. (13), up to or-

der �
4 are to be understood as the converging part of an

asymptotic series.
The second-order term τ

(2)
q [ρq] has already been de-

rived in ref. [26] for a Hamiltonian, eq. (7), with an effec-
tive mass m∗

q = m/fq and a spin-orbit potential �Wq

τ (2)
q [ρq] =

1
36

(�∇ρq)2

ρq
+

1
3
∆ρq +

1
6

�∇ρq · �∇fq

fq
+

1
6
ρq

∆fq

fq

− 1
12

ρq

(
�∇fq

fq

)2

+
1
2

(
2m

�2

)2

ρq

(
�Wq

fq

)2

, (14)

the first term of which is known as the Weizsäcker cor-
rection [7]. It was sometimes used in the past with an
adjustable parameter (instead of 1

36 ) in order to mock

up the absence of the other second-order and all of the
fourth-order terms. It has, however, been shown (see, e.g.,
ref. [6]) that such a procedure is unable to correctly de-
scribe both the slope of the surface of the nuclear mass or
charge density and, at the same time, the height of nuclear
fission barriers in the actinide region. From this analysis
we conclude that the inclusion of fourth-order terms in
the semiclassical functionals is, in fact, without credible
alternatives.

In the following we are going to exploit the expres-
sions for the 4th-order functionals τq and �Jq developed by
Grammaticos and Voros [9,10]. These authors have taken
the convention “that any free-standing gradient operator
acts only on the rightmost term” (see their remark after
eq. (III.13) of ref. [9]). In our present work we prefer to
rewrite these terms in a more conventional way and have
any free-standing gradient operator act, as usual, on all
the terms that appear on its right-hand side. We, there-
fore, write (subscripts GV refer to the Grammaticos-Voros
convention)

[
(�∇fq ·�∇)2fq

]
GV

=
1
2
(�∇fq ·�∇)(�∇fq)2 ,

[
(�∇ρq ·�∇)2fq

]
GV

= �∇ρq ·�∇(�∇fq ·�∇ρq) − 1
2

�∇fq ·�∇(�∇ρq)2 ,

and [
(�∇fq ·�∇)(�∇ρq ·�∇)fq

]
GV

=
1
2

�∇ρq ·�∇(�∇fq)2 ,

plus terms that are obtained from these ones by inter-
changing the role of fq and ρq. One has also to keep in
mind that Grammaticos and Voros use a slightly different
definition of the effective-mass and spin-orbit form factors
than the ones given in eqs. (9) and (10) above:

fGV =
1
m

f

and
�SGV =

1
�2

�W .

Using these expressions we obtain the following form
for the 4th-order kinetic energy density, where contribu-
tions from the spin-orbit interaction have been, temporar-
ily left out:

τ (4)
q [ρq] = (3π2)−2/3 ρ

1/3
q

4320

{
24

∆2ρq

ρq
− 60

�∇ρq ·�∇(∆ρq)
ρ2

q

−28
(

∆ρq

ρq

)2

− 14
∆(�∇ρq)2

ρ2
q

+
280
3

(�∇ρq)2∆ρq

ρ3
q

+
184
3

�∇ρq ·�∇(�∇ρq)2

ρ3
q

− 96

(
�∇ρq

ρq

)4
− 36

∆2fq

fq

+36
∆(�∇fq)2

f2
q

− 18
(

∆fq

fq

)2

− 72
�∇fq ·�∇(�∇fq)2

f3
q
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+54

(
�∇fq

fq

)4
+ 12

∆(�∇fq ·�∇ρq)
fq ρq

+ 24
�∇fq ·�∇(∆ρq)

fq ρq

−36
�∇ρq ·�∇(∆fq)

fq ρq
+ 24

�∇ρq ·�∇(�∇fq)2

f2
q ρq

−12
(�∇fq ·�∇ρq)∆fq

f2
q ρq

− 24
�∇fq ·�∇(�∇fq ·�∇ρq)

f2
q ρq

−44
�∇ρq ·�∇(�∇fq ·�∇ρq)

fq ρ2
q

− 16
�∇fq ·�∇(�∇ρq)2

fq ρ2
q

−52
(�∇fq ·�∇ρq)∆ρq

fq ρ2
q

+ 30
(�∇fq ·�∇ρq)2

f2
q ρ2

q

+
260
3

(�∇fq ·�∇ρq)(�∇ρq)2

fq ρ3
q

}
. (15)

The interested reader, who might want to use the semiclas-
sical functionals calculated here, will find in the appendix
the expression that the 4th-order kinetic energy density
takes in the case of spherical symmetry as well as all the
other semiclassical functionals developed below.

Until now we have not taken into account the spin-
orbit interaction. Its influence on the semiclassical ETF
functionals is treated in ref. [10] and its contribution τ

(4)so
q

constitutes simply an additive term to the spin-orbit in-
dependent part of the kinetic energy density considered
above. According to [10]:

τ (4)so
q [ρ]=(3π2)−2/3

(
2m

�2

)2
ρ
1/3
q

4f2
q

{[
1
4

�Wq ·∆ �Wq

+
1
2

�Wq ·�∇(div �Wq)+
1
8
∆( �W 2

q )+
1
4
(div �Wq)2

]

− 1
2fq

[
2 �Wq · (�∇fq ·�∇) �Wq+div �Wq (�∇fq · �Wq)

+�∇fq · ( �Wq ·�∇) �Wq+ �W 2
q ∆fq+ �Wq ·�∇( �Wq ·�∇fq)

−1
2

�∇fq ·�∇( �W 2
q )

]
+

3
4f2

q

[
(�∇fq)2 �W 2

q +( �Wq ·�∇fq)2

−
(

2m

�2

)2

�W 4
q

]
+

1
6ρq

[
�Wq ·(�∇ρq ·�∇) �Wq

+( �Wq ·�∇ρq) div �Wq

]
− 1

6fqρq

[
(�∇fq ·�∇ρq) �W 2

q

+(�∇fq · �Wq)(�∇ρq · �Wq)

]}
. (16)

It is now interesting to investigate the relative impor-
tance of the different contributions in eqs. (2), (14), (15)
and (16) to the kinetic energy density obtained when us-
ing the self-consistent semiclassical densities generated by
a variational procedure restricted to functions of the type
of eq. (4) as explained above. As can be seen in fig. 2 (a)

the Thomas-Fermi contribution to τ [ρ] is largely domi-
nant, at least in the nuclear bulk. Semiclassical correc-
tions play, however, a significant role in the nuclear sur-
face with a second-order correction which is much larger
than the fourth-order term (multiplied for better visibility
by a factor 10 in fig. 2 (a)). The different contributions to
the second- and fourth-order functional are given, respec-
tively, in part (b) and (c) of the figure. We show the contri-
butions coming form gradient terms of ρ (term 1 and 2 in
eq. (14)), of f (terms 4 and 5) and the mixed term (term
3) as well as the spin-orbit contribution (last term) and
similarly in part (c) of the figure for the fourth-order term.
As can be seen, the gradient term of ρ is dominant in 2nd
order, whereas in 4th order the spin-orbit contribution be-
comes also crucial. The self-consistent HF neutron kinetic
energy density is also shown in fig. 2 (a). One notices that,
except for quantum oscillations in the nuclear interior, the
HF kinetic energy density is quite nicely reproduced if the
semiclassical corrections τ2 and τ4 are taken into account.

It is interesting to note in this connection that, despite
the fact that the 2nd-order contribution τ

(2)
q (�r ) is one or-

der of magnitude larger than the 4th-order contribution,
after integration, the 2nd-order contribution of τ [ρ] to the
total energy, i.e. the integral

∑
q

∫
fq(�r )τ (2)

q (�r )d3r is of
the same order of magnitude than the corresponding 4th-
order contribution (see, e.g., [27,6]), which seems to indi-
cate that there is a stronger cancellation taking place in
the 2nd-order than in 4th-order contribution.

We have done the same study for the proton distribu-
tion, for other nuclei and used other effective interactions
of the Skyrme type, namely the Skyrme SIII force [17]
and the SLy4 Skyrme force [18]. The conclusions made
above remain valid in all these cases, only the relative im-
portance of the semiclassical corrections τ (2)[ρ] and τ (4)[ρ]
increases slightly when one goes from heavy to light nuclei.

As already discussed above, ETF functionals like
τ (ETF)[ρ], eq. (13), up to order �

4 constitute the
converging part of an asymptotic expansion which
needs to be truncated. Comparing, indeed, the
ρ-dependence of the different orders of the semiclas-
sical functional (ρ5/3 for τ (TF)[ρ], ρ for τ (2)[ρ] and ρ1/3

for τ (4)[ρ]) one concludes that a term τ (6)[ρ] in the ETF
functional would show a ρ-dependence of the form ρ−1/3

and would therefore diverge in the limit r → ∞ for
densities that fall off exponentially at large distances.

Let us now turn to the spin-orbit density �J . It is given
in ref. [10] in the form of a second-rank tensor which is
related to the components of the vector �J by the relation

Jλ =
∑
µν

ελµν Jµν ,

where ελµν is the Levi-Civita symbol. The spin being a
purely quantal property with no classical analogon, there
is no contribution to the semiclassical functional of �J in
lowest order, i.e. at the level of the Thomas-Fermi ap-
proach whereas one obtains for the 2nd- and 4th-order
contributions to the semiclassical expansion of the spin-
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Fig. 2. Contributions from the different orders in the semi-
classical expansion to the kinetic energy density τ [ρ] for the
self-consistent neutron density distribution shown in fig. 1 for
208Pb (TF (solid line), 2nd- (dashed line) and 4th-order mul-
tiplied (dotted line)) are compared with the corresponding HF
density (dash-dotted line) (part (a)). Different contributions
to 2nd (part (b)) and 4th order (part (c)) coming from gradi-
ent terms of ρ (solid line), of f (dashed line), of mixed terms
containing gradient terms of ρ and f (dotted line), and of the
spin-orbit coupling (dash-dotted line).

Fig. 3. Contributions from the different orders in the semiclas-
sical expansion (2nd (solid line) and 4th order (dashed line)) to

the radial part of the vector field �Jq(�r ) shown here for the self-
consistent spherical neutron distribution of 208Pb as compared
to the HF spin-orbit density (dash-dotted line).

orbit density
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Let us again investigate the convergence of the semi-
classical expansion associated this time with the vector
field �Jq[ρ] and compare it with the corresponding HF den-
sity. We show in fig. 3 the contributions to �Jq[ρ] from 2nd
and from 4th order as well as �JHF.

We would like to check now that the semiclassical func-
tionals which we have written down up to order �

4 are
indeed correct. We perform this test numerically in the
following way.

One notices that when calculating the total energy
through eq. (12) the kinetic energy density τq does not
appear by itself, but only in connection with the form fac-
tor fq. The τ -dependent part of the total energy is simply



J. Bartel and K. Bencheikh: Nuclear mean fields through self-consistent semiclassical calculations 185

obtained through the integral
∫

d3r
∑

q fqτq. In the con-
tribution at order �

4 to this integral one can then perform
integrations by parts to obtain an expression which con-
tains only second-order derivatives of the density ρq and
the effective-mass form factor fq [6]:
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, (19)

where τ
(4)
q is the spin-independent part of the kinetic en-

ergy density.
The dependence of the total energy density on the spin

degrees of freedom enters in two different ways: through
the spin-orbit part of the kinetic energy density τ so

q and
through a term �Jq· �Wq. This total spin dependence is then

given by
∑

q

∫ (
�
2

2mfqτ
so
q [ρ] + �Wq · �Jq[ρ]

)
d3r. It can be

shown after some integration by parts with eqs. (14), (16),
(17) and (18) that in the different orders of the semiclas-
sical expansion this integral takes on the simple form [6]∫ [
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(21)

We have tested the semiclassical functionals given
above by verifying numerically that these integral rela-
tions (19), (20) and (21) hold true.

We have also evaluated different integrals involving
these functionals and which have been calculated in
ref. [15]. We obtain agreement with their results of the
order of 1 to 2%, which is of the same order as their agree-
ment between the results of a full variational calculation
and one in the restricted subspace of modified Fermi func-
tions.

As can be seen in eq. (8) only the divergence of the
vector field �J is present in the expression of the central
one-body potential. One obtains from eqs. (17) and (18),
respectively, the contributions to 2nd order

div �J (2)
q = −2m

�2

1
fq

[
ρqdiv �Wq+ (�∇ρq · �Wq)− ρq

fq
(�∇fq · �Wq)

]
(22)

and, after some lengthy but straightforward calculation,
to 4th order
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4 Average nuclear potentials

One now controls all the ingredients which enter into the
calculation of the nuclear central potentials, eq. (8), for
effective interactions of the Skyrme type. It is now inter-
esting to look at the convergence of the expressions which
define these average fields calculated with the semiclas-
sical functionals τq[ρ] and �Jq[ρ] and to check how these
potentials compare with the ones obtained in the HF ap-
proach.

We, therefore, show in fig. 4 the neutron and proton
nuclear central potentials for the nucleus 208Pb obtained
for the Skyrme interaction SkM∗. The Coulomb poten-
tial VCoul for the proton field has been left out in this
investigation, because it is directly given through the pro-
ton density (see eq. (11)). As the latter is very well re-
produced, except for quantum oscillations in the nuclear
interior, we already know that the Coulomb potential cal-
culated through this semiclassical density will, indeed, re-
produce on the average the exact one calculated from the
quantum-mechanical densities.

We show a comparison between the HF neutron and
proton central potentials with the ones obtained using the
self-consistent semiclassical densities ρn and ρp but re-
stricting ourselves to the TF approximations for the func-
tional τ [ρ], eq. (2), and �J [ρ] (which is zero as explained
above). We do not want to call this the Thomas-Fermi
approximation to the nuclear central fields since even if
we have used the above-mentioned functionals in their
Thomas-Fermi approximation, the nuclear structure has
been determined through a full variational calculation in-
cluding the functionals up to order �

4.
As seen in fig. 4 the reproduction of the HF self-

consistent fields is already quite remarkable at the low-
est (TF) order in the semiclassical expansion. Apart from
shell oscillations in the nuclear interior and a small wiggle
in the TF potential in the surface region the agreement
seems very satisfactory.

It is now interesting to study the contributions to the
nuclear central fields coming from higher orders in the
semiclassical expansion. For this reason we show in fig. 5
the corrections δV

(2)
n and δV

(4)
n defined as (see eq. (8))

δV (2)
n = (B3 + B4)τ (2)

n + B3τ
(2)
p

+B9(2 div �J (2)
n + div �J (2)

p ) ,

δV (4)
n = (B3 + B4)τ (4)

n + B3τ
(4)
p

+B9(2 div �J (4)
n + div �J (4)

p ) , (24)

together with the semiclassical TF potential already
shown in fig. 4. It turns out that these corrections are
rather small and we have to multiply δV

(2)
n by a factor

of 10 and δV
(4)
n by a factor of 100 to make their relative

importance better visible in fig. 5.
It can be seen that both these terms give a contribution

in the nuclear surface where the lowest-order term showed
some deviation from the HF potentials. It is therefore to be
expected that potential using the second-order functionals

Fig. 4. Comparison of the Hartree-Fock central nuclear poten-
tials (solid line) for protons and neutrons with the correspond-
ing semiclassical potentials (dashed line) obtained using the

Thomas-Fermi approximation for the functionals τ [ρ] and �J [ρ].

τ (2)[ρ] and �J (2)[ρ] will partially correct for this deficiency
and be quite close to the self-consistent HF potentials.
Due to the smallness of the 4th-order term in fig. 5 we
can expect the semiclassical potentials obtained using the
full semiclassical functionals up to 4th order to be practi-
cally indistinguishable from the ones using the 2nd-order
corrections only. This conclusion is, indeed, confirmed in
fig. 6.

The same kind of calculations have been performed
also for lighter nuclei down to 40Ca. The quality of the
agreement between HF and semiclassical potentials is the
same as the one obtained for the nucleus 208Pb stud-
ied above. As already mentioned, the effective-mass form
factor fq(�r ), eq. (9) and the spin-orbit potential �Wq(�r ),
eq. (10) are, except for shell oscillations in the nuclear
interior, very well reproduced, since the nuclear densities
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Fig. 5. Semiclassical neutron potential using the TF approxi-
mation (solid line) of the semiclassical functionals τ [ρ], and �J [ρ]
and corrections coming from second (dashed line) and fourth
order (dotted line) in the semiclassical expansion. For better
visibility the second-order correction has been multiplied by a
factor of 10 and the fourth order by a factor of 100.

which directly determine these quantities are well repro-
duced. For this reason we do not explicitly show these
quantities. These conclusions remain valid when other ef-
fective interactions of the Skyrme type are used.

5 Summary and conclusions

We have demonstrated that using the Extended Thomas-
Fermi approach one is not only able to give a very pre-
cise description of average nuclear properties but that this
method is also able to reproduce quite nicely local quanti-
ties, not only neutron and proton density distributions but
also the corresponding nuclear central potentials, effective-
mass form factors and spin-orbit potentials. These are
precisely the ingredients of the Schrödinger-like Hartree-
Fock equation, eq. (7), which arises from the variational
principle. Within this semiclassical approach which relies
on a density variational calculation one should therefore
be able to solve in an approximate way the quantum-
mechanical problem without having to go through the
full self-consistency problem of the HF approach. This
is the essential idea of an approximate solution of the
HF problem known as the “expectation value method”
(EVM) [28]. It consists in constructing the ground-state
Slater determinant from the eigenfunctions of eq. (7) using
the ETF fields Vq(�r ), m∗

q(�r ) and �Wq(�r ) (to second order
in the ETF expansions) and calculating with this Slater
determinant the expectation value of the total Skyrme
Hamiltonian. The rapid convergence of the ETF function-
als demonstrated above explains, a posteriori, the success
of this approach.

Fig. 6. Comparison of the Hartree-Fock central nuclear poten-
tials (solid line) for protons and neutrons with the semiclassi-
cal potentials (dashed line) obtained by using the semiclassical

functionals τ [ρ] and �J [ρ] up to order �
2 (dashed line). The

semiclassical potentials including the functionals up to order
�

4 are indistinguishable from the latter ones.

The interested reader might object that nowadays,
where computational power has been increased tremen-
dously, there is no real need for semiclassical approxima-
tions, but all calculations of nuclear structure should be
directly performed at the level of the Hartree-Fock model
(or beyond). The point, however, is that as soon as one
is interested in nuclear systematics where one is looking
at the behavior of nuclei over a wide range of the nuclear
chart, semiclassical approximations are without any cred-
ible substitute.

A point that might, e.g., be interesting to study is the
variation of the diffuseness of the nuclear densities and
central potentials when increasing the nuclear excitation
and/or when going to rotating nuclei. The approach we
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have developed here is, indeed, easily generalized to the
description of excited or rotating nuclei. If one is inter-
ested in hot nuclear systems one simply need to replace
the semiclassical functionals for τ [ρ] and �J [ρ] which we
have developed by those derived in ref. [14] for the ETF
approach at finite temperature. In this case the coefficients
in the semiclassical expansions, eqs. (2), (14), (15), (16)
etc. are to be replaced by a combination of Fermi inte-
grals [14].

If, on the other hand, one is interested in the descrip-
tion of systems breaking time-reversal symmetry, the en-
ergy density, eq. (5), will be changed [11,12] and some
additional densities will appear, such as the current den-
sity �j(�r ) or the spin-vector density �ρ(�r ) which, in the case
of rotations, are a manifestation of the time-odd part of
the density matrix generated by the cranking piece of the
Hamiltonian. This causes not only a change in the ana-
lytical form of quantities such as the average potentials
Vq(�r ) which are now going to depend on these additional
densities but also leads to the appearance of additional
terms in the functionals τ [ρ] and �J [ρ]. These function-
als have already been determined in [12] which makes it
quite straightforward to calculate self-consistent semiclas-
sical fields such as Vq(�r ) for rotating nuclei very similarly
to what we have done here in the static case and inves-
tigate the dependence of these quantities with increasing
angular momentum. Investigations along these lines are
currently in progress.

The present method can also be profitably exploited to
establish some easy to use parametrization (as a function
of mass number A and isospin parameter I = (N −Z)/A)
of central and spin-orbit potential and effective mass and
this over a wide region of the nuclear chart [29]. Such an
investigation could be the ideal starting point for Stru-
tinski shell correction calculations as, e.g., formulated in
the so-called Extended Thomas-Fermi plus Strutinski in-
tegral (ETFSI) method (see ref. [30] and references given
therein) where average mean fields like the ones investi-
gated here are used to determine shell corrections.
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the investigation undertaken here and for his constant interest
in this work. The authors have also benefitted from fruitful
discussions with P. Quentin. One of us (KB) gratefully ac-
knowledges the hospitality extended to him during his stay at
the Institut de Recherches Subatomiques of Strasbourg. This
work is supported in part by the French-Algerian CNRS/DEF
scientific research agreement under Contract No. PNC 10090.

Appendix A.

As mentioned in the text we gather here the expressions
the ETF functionals take in the case of spherical symme-
try.

For the 4th-order spin-independent part of the kinetic
energy density, eq. (15), one obtains (primes denoting

derivatives with respect to the radial variable r):
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. (A.1)

When giving the spin-dependent part of τ
(4)
q [ρ] we take

advantage of the fact that the spin-orbit potential �Wq has
for Skyrme forces the simple form of eq. (10) which allows
us to introduce the quantity

Aq = ρ + ρq =⇒ �Wq = −B9
�∇Aq . (A.2)

Using the vector identity

rot(rot�a) = �∇(div�a) − ∆�a ,

one shows that because of the form of the spin-orbit po-
tential, eq. (10), one simply has

�W ·∆ �W = �W ·�∇(div �W ) ,

which then allows us to write the spin-dependent part of
τ

(4)so
q in the form of the local densities ρn and ρp and of
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their derivatives:
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which for spherical symmetry reads
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The 4th-order spin-orbit density �J
(4)
q [ρ], eq. (18) writ-

ten in terms of the function Aq defined above is given by
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which in the case of a spherically symmetric system takes
the form
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q [ρ] = (3π2)−2/3 mW0

�2

ρ
1/3
q

4fq

{
−

[
A′′′

q +
2
r
A′′

q −
2
r2

A′
q

]

+
1
fq

[
f ′′

q A′
q + f ′

qA
′′
q +

1
r
f ′

qA
′
q

]

−A′
q

f2
q

[
(f ′

q)
2 −

(
mW0

�2

)2

(A′
q)

2

]

− ρ′q
3fqρq

[
fq

(
A′′

q +
1
r
A′

q

)
− f ′

qA
′
q

]}
�ur (A.6)

with the unit vector in radial direction �ur.

The corresponding expressions for div �J
(4)
q [ρ] are the

following:

div �J (4)
q [ρ]=(3π2)−2/3 mW0

�2

ρ
1/3
q

8fq

{
− 2∆2Aq

+
1

2fq

[
2∆fq ∆Aq + �∇3fq·�∇Aq + 3∆(�∇fq ·�∇Aq)

+5�∇fq·�∇3Aq

]
− 1

f2
q

[
(�∇fq)2∆Aq + 3∆fq(�∇fq ·�∇Aq)

+5�∇fq ·(�∇Aq ·�∇)�∇fq + 5�∇fq ·(�∇fq ·�∇)�∇Aq)

−2

(
mW0

�2

)2(
∆Aq(�∇Aq)2 + �∇Aq ·�∇(�∇Aq)2

)]

+
6
f3

q

[
(�∇fq)2(�∇fq ·�∇Aq) −

(
mW0

�2

)2

(�∇Aq)2(�∇fq ·�∇Aq)

]

− 1
6ρq

[
∆(�∇ρq ·�∇Aq) + 7�∇ρq ·�∇3Aq − �∇3ρq ·�∇Aq

+2∆ρq ∆Aq

]
+

1
3fqρq

[
2(�∇fq ·�∇ρq)∆Aq

+�∇Aq ·�∇(�∇fq ·�∇ρq) + ∆ρq(�∇fq ·�∇Aq) +

+2�∇ρq ·�∇(�∇fq ·�∇Aq) + ∆fq(�∇ρq ·�∇Aq)

+2�∇ρq ·(�∇fq ·�∇)�∇Aq

]
− 1

3f2
q ρq

[
5(�∇fq ·�∇ρq)(�∇fq ·�∇Aq)

+(�∇fq)2(�∇ρq ·�∇Aq) − 2

(
mW0

�2

)2

(�∇Aq)2(�∇ρq ·�∇Aq)

]

+
2

9ρ2
q

[
�∇ρq ·(�∇ρq ·�∇)�∇Aq + (�∇ρq)2∆Aq

]

− 2
9fqρ2

q

[
(�∇fq ·�∇ρq)(�∇ρq ·�∇Aq) + (�∇ρq)2(�∇fq ·�∇Aq)

]}
.

(A.7)
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and in the case of spherical symmetry

div �J (4)
q [ρ] = (3π2)−2/3 mW0

�2

ρ
1/3
q

4fq

×
{
− (A(4)

q +
4
r
A′′′

q ) +
1
fq

[
f ′′′

q A′
q + 2f ′′

q A′′
q + 2f ′

qA
′′′
q

+
5
r
f ′

qA
′′
q +

3
r
f ′′

q A′
q −

1
r
f ′

qA
′
q

]
− 1

f2
q

[
3(f ′

q)
2A′′

q

+4f ′
qf

′′
q A′

q +
4
r
(f ′

q)
2A′

q −
(

mW0

�2

)2

(A′
q)

2
(
3A′′

q +
2
r
A′

q

)]

+
3
f3

q

f ′
qA

′
q

[
(f ′

q)
2 −

(
mW0

�2

)2

(A′
q)

2

]

− 1
3ρq

[
2ρ′qA

′′′
q + ρ′′q A′′

q +
1
r
ρ′′q A′

q +
5
r
ρ′qA

′′
q +

1
r2

ρ′qA
′
q

]

+
1

3fqρq

[
3f ′

qρ
′
qA

′′
q + f ′

qρ
′′
q A′

q + 2f ′′
q ρ′qA

′
q +

4
r
f ′

qρ
′
qA

′
q

]

− 1
3f2

q ρq
ρ′qA

′
q

[
3(f ′

q)
2 −

(
mW0

�2

)2

(A′
q)

2

]

+
2

9ρ2
q

(ρ′q)
2

(
A′′

q +
1
r
A′

q

)
− 2

9fqρ2
q

f ′
q(ρ

′
q)

2A′
q

}
(A.8)

which can also be obtained directly from eq. (A.6), re-
membering that the divergence of a vector field �a that has
only a radial component ar is given by

div�a =
1
r2

∂

∂r
(r2ar) .
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3. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980).

4. J.W. Negele, Rev. Mod. Phys. 54, 913 (1982).
5. P. Quentin, H. Flocard, Annu. Rev. Nucl. Part. Sci. 28,

523 (1978).
6. M. Brack, C. Guet, H.-B. H̊akansson, Phys. Rep. 123, 275

(1985).
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